An approach to ABG interpretation

- Is there hypoxia present? Assess for an alveolar-arterial gradient
 - a. https://www.mdcalc.com/a-a-o2-gradient
 - b. Normal A-a gradient 5-15 mmHg (increases with age/smoker/higher Fi02 (i.e. 3+(0.21xage))
 - c. If <u>elevated</u>, suspect disease of <u>V/Q mismatch</u> (improves with O2 therapy e.g. asthma, COPD, ILD, pulmonary vascular disease), or <u>shunt</u> (doesn't improve with O2 therapy e.g. atelectasis, APO, vascular shunt in lungs)
- 2. Is there an acid base disorder present?
 - a. pH < 7.35 acidemia
 - b. pH > 7.45 alkalemia

	Arterial
рН	7.35-7.45
PaO2 (mmHg)	80-100
PaCO2 (mmHg)	35-45
HCO3 (mmol/L)	22-26
Base excess (mmol/L)	-2 - +2

Table 1: Blood gas reference ranges

- a. In primary **respiratory** disorders, the pH and PaCO2 change in **opposite** directions
- b. In **metabolic** disorders the pH and PaCO₂ change in the *same* direction.

Acidosis	Respiratory	bH 1	PaCO ₂ ↑
Acidosis	Metabolic&	pΗ 1	PaCO ₂ 1
Alkalosis	Respiratory	рН 1	PaCO ₂ ↓
Alkalosis	Metabolic	† Ha	PaCO ₂ T

Table 2: Type of disturbance

- 4. Is there appropriate compensation for the primary disturbance (<u>Table 3</u>)?
 - a. If the observed compensation is not the expected compensation, it is likely that more than one acid-base disorder is present

Disorder	Expected compensation	Correction factor
Metabolic acidosis	$PaCO_2 = (1.5 \times [HCO_3-]) + 8$	± 2
Acute respiratory acidosis	Increase in [HCO ₃ -]= Δ PaCO ₂ /10	± 3
Chronic respiratory acidosis (3-5 days)	Increase in [HCO ₃ -]= 3.5(Δ PaCO ₂ /10)	
Metabolic alkalosis	Increase in PaCO ₂ = 40 + $0.6(\Delta HCO_3-)$	
Acute respiratory alkalosis	Decrease in [HCO ₃ -]= 2(Δ PaCO ₂ /10)	
Chronic respiratory alkalosis	Decrease in <code>[HCO3-] = 5(Δ PaCO2/10)</code> to 7(Δ PaCO2/10)	

Table 3: Assessing for compensation

- 5. Calculate the anion gap if a metabolic acidosis exists: AG= [Na+]- [Cl-] [HCO₃-]
 - a. Normal anion gap: 8-12meq/L, normal range lower in hypoalbuminaemic pts (2.5 meq/L lower for each 1 gm/dL decrease in the plasma albumin concentration)
 - b. If high anion gap, consider calculating osmolal gap
 - i. OSM gap = measured OSM (2[Na+] glucose/18 urea/2.8); normal OSM gap < 10

6	Ic thorp a	mivad	complex	acid hace	disturbanc	/table 112

Disorder	Characteristics	Selected situations
Respiratory acidosis with metabolic acidosis	Lin pH Lin HCO₃ tin PaCO₂	Cardiac arrest Intoxications Multi-organ failure
Respiratory alkalosis with metabolic alkalosis	1in pH 1 in HCO₃- 1 in PaCO₂	Cirrhosis with diuretics Pregnancy with vomiting Over ventilation of COPD
Respiratory acidosis with metabolic alkalosis	pH in normal range 1 in PaCO ₂ , 1 in HCO ₃ -	COPD with diuretics, vomiting, NG suction Severe hypokalemia
Respiratory alkalosis with metabolic acidosis	pH in normal range 1 in PaCO ₂ 1 in HCO ₃	Sepsis Salicylate toxicity Renal failure with CHF or pneumonia Advanced liver disease
Metabolic acidosis with metabolic alkalosis	pH in normal range HCO ₃ - normal	 Uremia or ketoacidosis with vomiting, NG suction diuretics, etc.

Causes of acid-base disturbances

Respiratory acidosis COPD, asthma, other obstructive lung disease CNS depression – opioids, sedatives OSA/OHS

- Neuromuscular impairment
- Increased CO2
 production: shivering,
 rigors, seizures,
 malignant
 hyperthermia,
 hypermetabolism,
 increased intake of
 carbohydrates

Metabolic acidosis

Elevated anion gap: MUD PILES

- Methanol intoxication
- Uraemia
- Diabetic ketoacidosis, alcoholic ketoacidosis, starvation ketoacidosis
- Paraldehyde toxicity
- Isoniazid
- Lactic acidosis
 - o Type A: tissue ischemia
 - Type B: Altered cellular metabolism
- Ethanol or ethylene glycol intoxication (osmolal gap)
- Salicylate intoxication

Normal anion gap: will have increase in [Cl-]

- GI loss of HCO₃-
 - Diarrhea, ileostomy, proximal colostomy, ureteral diversion
- Renal loss of HCO₃
 - o proximal RTA
 - carbonic anhydrase inhibitor (acetazolamide)
- Renal tubular disease
 - o ATN
 - Chronic renal disease
 - Distal RTA
 - Aldosterone inhibitors or absence
 - NaCl infusion, TPN, NH₄+ administration

Respiratory alkalosis

- Hyperventilation (fever, pain, fear, anxiety, CVA, CNS trauma/tumor/ infection
- Hypoxemia or hypoxia (profound anemia, low FiO2)
- Lung diseas APO, pleural effusion, pneumonia, pneumothorax, pulmonary embolus
- Pregnancy, liver disease, sepsis, hyperthyroidism

Metabolic alkalosis

Hypovolemia with Cl- depletion

- GI loss of H+
- Vomiting, gastric suction, villous adenoma, diarrhea with chloriderich fluid
- Renal loss H+
- Loop and thiazide diuretics, posthypercapnia (especially after institution of mechanical ventilation)

Hypervolemia, Cl- expansion

- Renal loss of H+:
 - Oedematous states (heart failure, cirrhosis, nephrotic syndrome),
 - Endocrines disorder:
 hyperaldosteronism,
 hypercortisolism, excess ACTH,
 exogenous steroids,
 hyperreninemia
 - Severe hypokalemia
 - o Renal artery stenosis
 - Bicarbonate administration

Reference link for more details:

https://www.thoracic.org/professionals/clinical-resources/critical-care/clinical-education/abgs.php https://www.nps.org.au/australian-prescriber/articles/the-interpretation-of-arterial-blood-gases